Proofreading and spellchecking: a two-tier strategy for pre-mRNA splicing quality control.
نویسندگان
چکیده
Multi-tier strategies exist in many biochemical processes to ensure a maximal fidelity of the reactions. In this review, we focus on the two-tier quality control strategy that ensures the quality of the products of the pre-mRNA splicing reactions catalyzed by the spliceosome. The first step in the quality control process relies on kinetic proofreading mechanisms that are internal to the spliceosome and that are performed by ATP-dependent RNA helicases. The second quality control step, spellchecking, involves recognition of unspliced pre-mRNAs or aberrantly spliced mRNAs that have escaped the first proofreading mechanisms, and subsequent degradation of these molecules by degradative enzymes in the nucleus or in the cytoplasm. This two-tier quality control strategy highlights a need for high fidelity and a requirement for degradative activities that eliminate defective molecules. The presence of multiple quality control activities during splicing underscores the importance of this process in the expression of genetic information.
منابع مشابه
The splice is right: guarantors of fidelity in pre-mRNA splicing.
Two recent papers, one from the Staley laboratory (Koodathingal and colleagues) and the other from the Cheng laboratory (Tseng and colleagues), show that the RNA-dependent ATPase Prp16, which is required for the second step of splicing, acts to reject slowly splicing pre-mRNAs immediately before the first catalytic reaction in pre-mRNA splicing. The results answer long-investigated questions ab...
متن کاملThe Evolutionarily-conserved Polyadenosine RNA Binding Protein, Nab2, Cooperates with Splicing Machinery to Regulate the Fate of pre-mRNA.
Numerous RNA binding proteins are deposited onto an mRNA transcript to modulate post-transcriptional processing events ensuring proper mRNA maturation. Defining the interplay between RNA binding proteins that couple mRNA biogenesis events is crucial for understanding how gene expression is regulated. To explore how RNA binding proteins control mRNA processing, we investigated a role for the evo...
متن کاملThe DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5' splice site cleavage during pre-mRNA splicing.
To investigate the mechanisms underlying accurate pre-mRNA splicing, we developed an in vitro assay sensitive to proofreading of 5' splice site cleavage. We inactivated spliceosomes by disrupting a metal-ligand interaction at the catalytic center and discovered that, when the DEAH box ATPase Prp16 was disabled, these spliceosomes catalyzed 5' splice site cleavage but at a reduced rate. Although...
متن کاملPre-mRNA splicing within an assembled yeast spliceosome requires an RNA-dependent ATPase and ATP hydrolysis.
Unlike autocatalyzed self-splicing of group I or group II introns, the removal of pre-mRNA introns in vitro occurs in the spliceosome. The spliceosome is a multicomponent complex composed of pre-mRNA, small nuclear ribonucleoprotein particles, and protein factors. ATP is required for the assembly of the spliceosome and both transesterification reactions. An RNA-dependent ATPase, the product of ...
متن کاملSplicing proofreading at 5′ splice sites by ATPase Prp28p
Fidelity and efficiency of pre-mRNA splicing are critical for generating functional mRNAs, but how such accuracy in 5' splice site (SS) selection is attained is not fully clear. Through a series of yeast genetic screens, we isolated alleles of prp28 that improve splicing of suboptimal 5'SS substrates, demonstrating that WT-Prp28p proofreads, and consequently rejects, poor 5'SS. Prp28p is though...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RNA
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2011